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Abstract—Online Social Networks (OSNs) have become ex-
tremely popular in recent years, leading to the presence of huge
volumes of users’ personal information on the Internet. This
increases the need for efficient and effective measures helping
users to judge their direct contacts so as to avoid friendship with
malicious users that could misuse their personal information.

At this purpose, in this paper we propose a risk measure,
called local risk factor, having as a key idea the fact the malicious
users in OSNs (aka attackers) show some common features on
the topology of their social graphs that is different from those of
legitimate users. This consideration brought us to design a set of
graph based features defined based on attacker activity patterns.
To prove the effectiveness of the proposed risk measure, we run
several experiments on a real OSN dataset (i.e., Orkut social
network) with more than 3 million vertices and 117 million edges,
by injecting synthetic fake users according to different settings
and showing how the proposed measures can indeed help in their
detection.

Keywords-Online Social Network (OSN); Risk assessment;
Anomaly detection; Graph analysis.

I. INTRODUCTION

It is a matter of fact that Online Social Networks (OSNs)
are now part of everyday life for millions of people. These
are used to keep in touch with family, friends, share per-
sonal information, as well as manage business relationships.
As such, OSNs have become a huge collector of personal
data, usually shared among network participants according to
their connections. As examples, both Facebook and Google+
support sharing rules (i.e., privacy settings) making a user
able to state which connections one has to have in order to
access his/her personal information. In general, the connection
is specified in terms of the relationship type (e.g., groups in
Facebook and circles in Google+) and its distance (e.g., direct
contacts, friend of friends). These rules greatly simplify infor-
mation sharing in OSNs, but they bring a serious drawback in
that the establishment of a new relationship might imply the
exposure of your personal data to a huge amount of unknown
person, as an example in case of friend-of-friends sharing
rule. This scenario gets even worse if we consider that typical
OSN user is now used to establish relationships with people
they do not know. Moreover, this is further exacerbated by
the fact that the increasing popularity of OSNs has recently
encouraged attackers to develop different techniques to exploit
OSN infrastructures for malicious purposes. The most notable

types of attacks in OSNs are sybils/socialbots, identity cloned
attacks, socwares, compromised account attacks, cyberbulling
attacks, and creepers [1], [2].

To cope with emerging security and privacy concerns,
research community has started to deeply investigate and pro-
pose mechanisms for safer and trustworthy OSNs. Orthogonal
to all these efforts, we believe there is the need of measures
helping user to judge his/her contacts. This brings us to
investigate a risk estimation by considering the topology of
user’s social graph. In doing this, we leverage on relevant
results achieved on graph-based outlier detection. In particular,
the proposed risk measure comes from the observation done
in [3], where it has been highlighted that a user of a given
network is anomalous if his/her subgraph significantly differs
from those of other users. More precisely, in this paper,
we adapt the definitions proposed in [4] so as to have an
unsupervised graph-based outlier detection methods tailored
over features meaningful for the detection of risk behaviors
in OSNs. The overall purpose is to obtain a local risk factor
measure that helps users to detect potential attackers among
their contacts. The obtained results show that these topological
features can indeed be used to define the risk of direct contacts
in large scale OSNs.

The remainder of this paper is organized as follows. Section
II introduces the overall idea underlying our approach, whereas
Section III provides a summary of the considered graph based
features. Section IV illustrates our graph based risk measure.
Experiments are presented in Section V, whereas related work
are discussed in Section VI. Finally, Section VII concludes the
paper.

II. OVERALL APPROACH

The proposing risk estimation measure comes from the
observation done in [3], where it has been highlighted that
a user of a given network is anomalous if his/her subgraph
significantly differs from those of other users. To define the
subgraph, we borrow the terminology from social network
analysis (SNA), where ”ego” is an individual user in OSNs.
In SNA, the direct subgraph of an ego node is known as its
”egonet”. In our proposal, based on the behavior of malicious
users in OSNs, we consider not only the direct subgraph of
ego, but also the direct subgraph of his/her direct contacts
(two step subgraph). Therefore, the subgraph of an ego is a



collection of all direct contacts of ego, the direct contacts of
his/her direct contacts as well, and all the connections among
them (see Section III-B for a more detailed discussion).

We have then to define a measure for comparing differ-
ent subgraphs. We exploit the lesson learnt from an outlier
detection technique presented in [5], saying that density can
represent an interesting measure to catch anomalous nodes.
In particular, by comparing the local density of a node to the
local densities of its nearest users, one can identify regions
of similar density, and nodes that have a substantially lower
density than their nearest users, considered to be outliers. The
local density of a user u is computed based on a distance
measure. In particular, we first compute the Euclidean distance
between u and all the users in the network. Then, we rank
the results and we select the distance of the user at the k-th
position. Thus, local density of u is defined as the inverse of
this distance.

Given the purpose of this paper, i.e., risk estimation, we
compute the Euclidean distances based on a set of topological
features that we believe are meaningful for the detection of
risky behaviors. These features have been selected based on a
review of current well-known OSN attacks (see discussion in
Section III for more details).

According to [4], we can exploit the local density of u,
to determine its Divergency Factor, that is, how much u is
different from the rest of the network. More precisely, how
much u’s density is different from the ones of users that are
topologically similar to u. These users are defined as k-nearest
users1.

Literature offers different ways to compute the divergency
factor, see for instance [4], [5]. In this paper, we exploit the
method proposed in [4], called INFLO. The benefit of this
method is that it also considers the symmetric neighborhood
relationship in computing the k-nearest users. This means that
a user z is into the k-nearest users of a user y if the Euclidean
distance between z and y is less than the one at the k-th
position in the ranking and there is symmetry in their k-nearest
users, that is, y is into the k-nearest users of z as well.

Once the divergency factors for all users in the network
have been computed, a target user u will be able to assign a
Local Risk Factor to each node y in his/her direct contacts list,
based on how much y’s divergency factor is different from the
divergency factor of the other u’s direct contacts. Thus, u can
understand how much his/her contacts are risky by ranking
their local risk factors (see Section IV for more details).

III. TOPOLOGICAL-BASED FEATURES FOR RISK
ESTIMATION

In this section, we introduce the features we use for com-
puting our measures. We have driven the selection of them

1Given a k, the k-nearest users are determined by computing the Euclidean
distance of u with all other users in the network. Once all the Euclidean
distances of u with other users in the network have been computed, we rank
the results and we select the value distk(u) of the Euclidean distance at the
k-th position in the ranking. Based on this value, we can define the k-nearest
users of a target user u as the set of users whose Euclidean distances with
u is less than distk(u).

by what have been so far recognized as risky users in OSNs,
that is, attackers. The topological patterns of attackers are, in
general, different from those of normal users. The discrepancy
is defined in terms of the structure of their social graphs which
are hard to be changed by attackers. In the following, we first
summarize the most notable attacks and related topological
information, we then introduce the considered features.

A. Risky behaviors in OSNs

Sybil attacks are one of the most prevalent and practical
attack in OSNs [6]. To launch a Sybil attack, a malicious
user has to create multiple fake identities, known as Sybils,
with the purpose to legitimate his/her identity [6], so as
to unfairly increase his/her power and influence within a
target community. After that, attackers start sending friendship
requests to other users in the community. Once the requests
have been accepted, the socialbot can gather users’ private
data. Sybil attacks can be classified into three main types.

The first is Sybils with a tight-knit community (dense
friendship graph), where adversaries create huge number of
Sybils by also establishing connections among them [7], [8].
Due to this high number of connections, Sybils tend to form
tight knit clusters in their direct subgraph.

In contrast, authors in [9] have analyzed the distribution
of Sybil accounts in the Renren OSN2. This shows that the
vast majority of Sybil accounts do not form social links
among them. Moreover, even in case they form, the resulting
clusters are loose, rather than tightly connected. They found
that attackers use snowball sampling techniques to identify
and send friend requests to popular users, since these are more
likely to accept requests from strangers. Therefore, Sybils have
friendship links with a lot of strangers and their friendship
graph become sparse. As such, the analyzed Sybils shows to
belong to another type of Sybils attackers, that is, Sybils with a
sparse community (sparse friendship graph). Moreover, authors
in [3] show that the majority of anomalous users in an OSN
have neighbors that are either very well connected (forming a
near-cliques), similar to Sybils with tight-knit community, or
not connected (stars), similar to Sybils with sparse community.

In Sybils with sparse friendship graph, attackers after cre-
ating a huge number of Sybil accounts establish few connec-
tions among themselves, and then they try to send friendship
requests to popular users.

In addition, some works show that Sybils first establish
few connections among themselves, and then they try to
send friendship requests to other users. Researchers prove
that in most cases Sybils fail to create friendship links with
legitimate users [7], [8]. In this way we introduce the third
category of Sybils with a friendship graph that is not sparse
or dense in the direct subgraph, since they have a small
number of mutual friends with their direct contacts. Although
Sybils in this category have a normal friendship graph in their
direct subgraph, but they fail to create friendship links with
legitimate users and majority of their friends are popular users

2http://www.renren-inc.com/en/



Fig. 1: Subgraph for each target user

or other malicious users. Therefore, the structure of the direct
subgraph of their friends is different from those of legitimate
users.

A final note is about the generation of fake profiles, which
are created by non-malicious users, called creepers [1] wishing
some extra accounts, for several purposes, like social reasons
such as friendly pranks, stalking, cyberbullying, etc. [1], [8].
A recent paper stated that the market of buying fake followers
and fake retweets is already a multimillion-dollar business
[10].

B. Features

Given a user u, we model the graph from which the
topological features of u are extracted as the subgraph formed
by the set of users, and related relationships, that can be
reached by at maximum P-steps from u as exemplified by
Figure 1. In computing the features, we consider P=2, since, as
discussed in [11], real social networks show a small diameter.
Based on the discussion in Section III-A, we consider the
following topological features of u, extracted from its 2-step
subgraph:

• Degree of u, (Degree), that is, the number of direct
contacts of u;

• Triangles count of u, (TriangleCount), where a triangle
exists when a node has two adjacent nodes that are also
adjacent to each other;

• The ratio between degree and triangle count of u, that is,
RateDT = Degree/TriangleCount.

• The average degree of all direct contacts of u,
(AvgDegree);

• The average triangle counts of all direct contacts of u,
(AvgTriangleCount);

• The average ratio between degree and triangle
count of all direct contacts of u, AvgRateDT =
Avg(Degree/TriangleCount).

IV. LOCAL RISK SCORE

Our goal is to assign a risk score to the direct contacts of a
target OSN user u, based on the deviation of their divergency
factors. As introduced in Section II, we exploit the Influence
Outlierness (INFLO) [4] for the computation of the divergency
factor. INFLO exploits not only the k-nearest users, but also,
the reverse k-nearest users (RNU) [12]. Members of RNU of
a user u are users that have u as one of their k-nearest users.
More formally, we introduce the definition of k-nearest users
and reverse k-nearest users.

Definition 1 (k-nearest users of u): Let G be the graph
modeling the OSN, and u be a node in G. Given a value
k, the k-nearest-users of u are defined as:

NUk(u) = {u′ | u′ ∈ G, dist(u, u′) ≤ distk(u)} (1)

where dist(u, u′) denotes the Euclidean distance be-
tween u and u′ computed on a selection of features
among {Degree, TriangleCount, RateDT , AvgDegree,
AvgTriangleCount,AvgRateDT};3 distk(u) is the Eu-
clidean distance value between u and the user in G placed
in the k-th position w.r.t. the Euclidean distance ranking.

Definition 2 (Reverse k-nearest users of u): Let G be the
graph modeling the OSN, and u be a node in G. Given a
value k, the reverse k-nearest-users of u is defined as:

RNUk(u) = {u′ | u′ ∈ G, u ∈ NUk(u
′)} (2)

Given a user u the union of NUk(u) and RNUk(u) forms
its local neighborhood space denoted as SNk(u) to estimate
the density distribution around u. According to [4], INFLO is
defined as the ratio of the average density of users in SNk(u)
to the u’s local density:

INFLOk(u) =
denavg(SNk(u))

den(u)
(3)

where denavg is the average density of users in SNk(u) and
den(u) is the local density of user u. Based on INFLO, we
can now provide the definition of divergency factor.

Definition 3 (Divergency Factor): Let G be the graph mod-
eling the OSN, and u be a node in G. Given a value k, the
Divergency Factor of u, DFk(u), is given by INFLOk(u),
where the Euclidean distances are computed on a selec-
tion of features among {Degree, TriangleCount, RateDT ,
AvgDegree, AvgTriangleCount,AvgRateDT}.
The divergency factor is a measure to define how much the
neighborhood of a given user u is different from his/her nearest
users. We can then use the divergency factor to assign a local
risk factor to each direct contact of a target user u. This risk
measure is defined on the basis of how much a direct contact
of u is different from other u’s contacts. We refer to this as
the divergency factor deviation (DFD), formally defined as
follows.

3As described in Section V, in order to validate the effectiveness of the
proposed features, we carried out experiments by considering not only all the
six features, but also a selection of them.



Definition 4 (Divergency factor deviation): Let G be the
graph modeling the OSN, let u be a node in G, and let y
be one of its direct contacts. Given a value k, the divergency
factor deviation of y for u is the defined as:

DFDk(u, y) = DFk(y)− (STDDF (u) +ADF (u)) (4)

where DFk(y) is y’s divergency factor; STDDF (u) and
ADF (u) are the standard deviation and the mean of the di-
vergency factor values of all direct contacts of u, respectively.

Based on the above definitions, given a target node u and
one of its direct contact, say y, we have two divergency
measures for y. The first one is DFk(y), that shows how
much the density of the neighborhood of y is different from its
density. The second one is DFDk(u, y), that shows how much
the divergency factor of y is different from the divergency
factor of other contacts of u. We combine these two measures
to obtain the Local Risk Factor, formally defined as follows.

Definition 5 (Local Risk Factor): Let G be the graph mod-
eling the OSN, a let u be a node in G, and let y be one of
its direct contacts. Given a value k, the Local Risk Factor of
y for u is the defined as:

LRFk(u, y) = DFk(y) +DFDk(u, y) (5)

Given a target node u, we first compute the LRF for each of
its direct contacts, then we rank them based on their LRFs
and we flag as risky those contacts whose LRF is higher
than a threshold, denoted as LRFT (u) and defined based on
the distribution of LRF values of u’s contacts. In particular,
the threshold for target user u is computed as: LRFT (u) =
STDLRF (u) + MeanLRF (u), where STDLRF (u) and
MeanLRF (u) are the standard deviation and the mean of
the LRFs of all direct contacts of u, respectively.

V. EXPERIMENTS

Experiments aim at showing how the proposed local risk
factor measure can be used to detect risky users in the contact
list of a target user u. At this purpose, we have used a
real social graph, that is, the Orkut Online Social Network
(OSN) dataset taken from SNAP 4. In this dataset, there are
3,072,441 nodes and 117,185,083 edges. Unfortunately, the
dataset is not provided with a ground truth, in that we do
not have any information about which nodes in the Orkut
dataset are risky. This is a common problem in validating
anomaly detection techniques, where, as discussed in [13],
several different validation approaches have been used in the
literature, such as anomaly injections or qualitative analysis.
There are several works based on anomaly injection to evaluate
the result of anomaly detection models [14]–[16]. In this paper,
we follow the idea of injecting fake users into the real graph,
that is, nodes and random connections, created such as to
simulate some kind of attacks. In particular, we simulate four
different categories of risky users in OSNs (see discussion in
Section III).

4https://snap.stanford.edu/data/

For each category, we inject the nodes into the Orkut dataset.
Then, we compute a divergency factor for all the users in
the obtained new dataset and the local risk factor for all the
injected fake users. The LRF of a fake user is computed w.r.t.
a target user u. In particular, the target user is selected among
the real nodes in the Orkut social graph that have at least a
connection with the injected fake node. Finally, we flag as
risky a fake user, if its LRF deviates from those of the other
direct contacts of u, based on the computed threshold value.
In other words, if the LRF of fake node is higher than a local
threshold of target user, we flag him/her as risky.

In all the experiments we set k from 5 to 10, since
considering a high value for k in large social graph has a
high computational cost and, according to [4], does not have
a big effect on the result.

Moreover, in order to test the effectiveness of the features
described in Section III-B, we carried out experiments by
considering different combinations of the features. In the
following, we first describe the feature combinations, we then
introduce the three categories of injected fake users, finally we
discuss the experimental results.

A. Features settings

Once the six features described in Section III-B have been
computed, we consider the following different combinations
for computing the Euclidean distances.
All the six features. According to this setting, we consider
all the six features described in Section III-B. Figure 2 shows
the distribution of computed divergency factors for all users
in the considered dataset. In this feature setting, the DF is in
the range between [0, 250] and most of the users have a DF
in the range [0, 2.7], whereas few of them are with DF higher
than 2.7.
Ratio of degree to triangles count. In this setting, we
consider only RateDT and AvgRateDT in the divergency
factor computation. In the RateDT , we are interested to catch
those users for witch there is no balance between their degree
and triangle count as this could indicate a risky conduct. In
addition, by bringing AvgRateDT into account, we consider
also for all his/her direct contacts as well. Therefore, we
consider both the subgraph around each user and all his/her
direct contacts for our risk estimation.

In this way, we are able to catch users whose two steps sub-
graph are very well connected (near-cliques) or not connected
(stars). As we can see in Figure 3, most of the users have a
DF in the range [0, 2.7], whereas just few of them diverge
from their nearest users with DF higher than 2.7. The range
of DF is [0, 84].

B. Injected risky users

In this section, we introduce the three categories of fake
users we inject in the Orkut dataset. Sybils with sparse
friendship graph. The first kind of attack that we try to
simulate is Sybils with sparse friendship graph in their direct
subgraph. As we discuss in Section III-A, these kind of
attackers have friendship links with a lot of strangers by



Fig. 2: DF distribution by considering all the six features

Fig. 3: DF distribution by considering Ratio and AvgRateDT

using random sampling techniques to send friend requests to
strangers. Therefore, we inject 100 users, each one having a
number of edges selected randomly in the range of the mean
and the sum of the mean and the standard deviation of degree
of all users in the real graph (i.e., values in [100, 250]) to
be similar to regular users. Then, we totally create around
10000 to 25000 friendship links among these 100 Sybils with
randomly selected users from the whole graph by considering
random sampling.
Sybils with dense friendship graph. The second type of
attackers are Sybils with dense friendship graph or tight-nit
communities. To model these attackers, after creating 100 fake
nodes and inject them into the graph, we generate the edges
among themselves and then, with a set of randomly selected
users and also the 80% of their direct contacts to have more
mutual friends with each friend. Moreover, we generate these
edges so that each fake node has a degree in the average range
of all other legitimate users, to be more similar to other regular
users.
Sybils with normal friendship graph. The third type of
attackers are Sybils with normal friendship graph. In this kind
of attacks, attackers after creating a huge number of Sybil
accounts establish few connections among themselves, and
then they try to send friendship requests to popular users.
To model these attackers, after creating 100 fake nodes and
inject them into the graph, we generate the edges with a set
of randomly selected users with high degree in the range of

[1000, 33000]. Then, totally we create around 10000 to 25000
friendship links among these 100 Sybils with popular users.
Real users with additional fake accounts (creepers). These
risky users are real users wishing some extra accounts. Usually
these users have not a high degree in the graph, but they
just create a fake account and then, randomly pick us some
strangers and make friendship links with these random users.
The difference of these creepers with Sybils with sparse
friendship graph is that they have few friendship links since
their goal is not as attackers to influence the graph by having
more links. To model this type of risky users, we inject 100
users each having a number of edges in the range of the mean
minus standard deviation and mean of degree of all users in
real graph (i.e. values in [50, 150]). We create these friendship
link with randomly selected users from whole the graph. Then,
totally we create around 5000 to 150000 friendship links
among all these 100 fake users and other users in the network.

C. Experimental results

We run our experiment with two different feature settings
previously discussed on the four different graphs with injected
risky users. After calculating the LRF for each user, we
compute the difference of the LRF value with the local LRF
threshold of target user LRFT (u) that is in contact with the
risky user. In this way, if the LRF of each user is higher than
LRFT (u) among the other contacts of target user u, the user
is detected as risky. We consider the value zero for those risky
users such that their LRF is lower than the LRFT (u), since
they are not deviate from other contacts of target user u, that
is:{

LRFk(u, y)− LRFT (u) if LRFk(u, y) > LRFT (u)

0 if LRFk(u, y) ≤ LRFT (u)

We flag as risky those users with the difference of their LRF
and LRFT (u) higher than zero. The result of the first and
second feature settings for the four categories of risky users
is shown in Table I. Here, we can see the percentage of risky
users that are detected by the majority (more than 50%) of
target users that are in contact with them. Furthermore, Table
II represents the percentage of fake users that are detected as
risky by at least one of the target users that are in contact with
them. In more detail, Figure 4 shows 100 different categories
of fake users that are detected as risky with the percentage of
target users that are in contact with each one. In particular, the
x-axis shows the percentage of target users that are in contact
with each fake user and able to detect him/her as risky and
the y-axis show the percentage of fake users that are detected
as risky. As we can see in the Figure 4, most of the fake
users are detected with more than 50 % (>= 0.5 in x-axis)
of target users that are in contact with them. Figure 5 shows
all target users that are in contact with 100 Sybils with sparse
friendship graph, to see how many of the target users are able
to detect these 100 Sybils as risky. As we can see in Figure 5,
among 15490 target users that are in contact with these Sybils,
around 13470 are able to detect these Sybils in their contact



Feature Setting Sparse Sybils Dense Sybils Sybils with normal direct subgraph Risky Fake Accounts (Creepers)
All the Six Features 90% 41% 79% 77%
RateDT and AvgRateDT 95% 76% 90% 95%

TABLE I: Detection rate of risky users detected by majority of the target users

Feature Setting Sparse Sybils Dense Sybils Sybils with normal direct subgraph Risky Fake Accounts (Creepers)
All Six Features 100% 52% 95% 89%
RateDT and AvgRateDT 100% 99% 99% 98%

TABLE II: Detection rate of risky users detected by of at least one of the target users

Fig. 4: Risky users that are detected with target users in feature
setting (RateDT and AvgRateDT)

Fig. 5: Target users that are able to detect Sybils with sparse
direct subgraph

list as risky that is around 86.95 percent of all target users
that are in contact with them. To calculate the performance
of our risk models with different feature settings, we compute
the F-measure. We need to mention that for calculating F-
measure, we need to compute precision and recall that is based
on: false positive (FP), false negative (FN), true positive(TP)
and true negative (TN). In order to calculate precision and
recall, we need to calculate also the false positive that is the

number of legitimate users that are detected as risky in our
risk models. Therefore, the evaluation based on precision and
recall is challenging since it would be severe to call the risky
users detected other than the injected ones as false positives,
given that the original real graph may also contain same type
of anomalies and risky users [13].

Based on anomaly detection concept, the majority of users
obey a pattern and only few users that deviate, considered as
outliers [3]. Therefore, to consider a set of legitimate users, we
selected 1000 legitimate users randomly not from the whole
graph but among those users that their graph structure is
similar to majority of users inside the real graph. In other
words, we didn’t consider outliers for this selection.

Then, we find a measure to find legitimate users since
considering all users with high degree or low degree and
also users with high triangle count or low triangle count as
legitimate or anomalous is not reasonable. This is motivated
because, there is a large number of popular users with high
degree as shown in Figure 6a that is around 30,105 users
with number of degree higher than 700 in the range of [700,
33313]. Figure 6a shows the number of users in the x-axis
and the number of degree in y-axis. The maximum degree
of users in the graph is 33313. Furthermore, there is a hight
number of users with high triangle count or isolated users
with low triangle count as shown in Figure 6b. The maximum
value of triangle count is 1,666,622 that we can see there are
around 100,000 users with triangle count in the range of [1000,
1666622].

But, Figure 6c shows the relation of increasing the degree
with triangle count that is RateDT for all users inside the
real social graph. As we can see the majority of users have a
RateDT near the red line and just few users surrounded with
red circles have these values outside the line that is considered
as outlier in [3]. Therefore, we select our 1000 normal users
randomly among those users with RateDT between 0.1 and
10, since 98% of users have this range of values.

Then, after computing their LRF, we consider all target users
that are in contact with normal users to see the percentage of
these normal users that by mistake are detected as risky. For
example, between all target users (33156) that are in contact
with the 1000 normal users when we consider (RateDT and
AvgRateDT) as features, around 1196 of them detect these
normal users as risky that is 3.60% percent of all target users.

Table III represents the F-measure for the two feature set-
tings with all four categories of fake users when the majority



(a) The distribution of user’s degree in OSN
(b) The distribution of user’s triangle count
in OSN (c) The plot of user’ RateDT in OSN

Fig. 6: The distribution of user’s degree, triangle count and RateDT in Orkut OSN

Feature Setting Sparse Sybils Dense Sybils Sybils with normal direct subgraph Risky Fake Accounts (Creepers)
All Six Features 0.90 0.54 0.839 0.826
RateDT and AvgRateDT 0.939 0.821 0.925 0.936

TABLE III: F-measure in the two feature settings (majority of target users detect risky users)

Feature Setting Sparse Sybils Dense Sybils Sybils with normal direct subgraph Risky Fake Accounts (Creepers)
All Six Features 0.955 0.649 0.93 0.897
RateDT and AvgRateDT 0.961 0.956 0.95 0.951

TABLE IV: F-measure in the two feature settings (At least one target user detect risky users )

of the target users, in contact with them, have detected them.
Based on the result, the performance of risk model with two
feature settings (RateDT and AvgRateDT) is the best, since
these are the most influential features that reveal these kind
of risky structural patterns in the graph. As we can see, the
performance of detecting sybils with sparse direct subgraph is
the best around 90% and sybils with normal direct subgraph
and creepers are in the second rank still more than 90%. The
performance of detecting sybils with dense direct subgraph is
lower around 82% since there are some other users inside the
real graph with severe case than this category of sybils with a
very high degree more than 1000 and very high triangle count
more than 900,000 that make their direct subgraph denser
than Sybils. Also, Table III shows the value of F-measure
when at least one target user detects fake users as risky. Based
on the result, again the performance of risk model with two
feature settings (RateDT and AvgRateDT) is the best. Also,
the performance of all four categories of fake users are more
than 95 % that is a very good result. We can see that our risk
model is able to help target users to detect risky users with a
high accuracy and low false alarm (FP) rate.

VI. RELATED WORK

Relevant for our proposal are the works targeting graph-
based outlier detection (see [13] for a survey). Among them,
structure-based approaches make use of graph-centric features,
such as node degree and subgraph centrality [17], that are
sometimes used together with other features extracted from

additional information sources to identify outliers. The feature-
based approaches have been used in several anomaly detection
application domains, including network intrusion detection
[18], web spam detection [19] and, fraud detection [20].

On of the research works, ODDBALL [3] extracts ego
network features by considering one step subgraph, such as the
degree, total weight, principal eigenvalue, etc. to find patterns
that most of the nodes of the graph follow with respect to those
features and spot anomalous nodes as those that do not follow
the observed patterns. In our approach we consider different
features driven by the structural behavior of attackers in real
OSNs. In addition, we considered the 2 step subgraph (the
network of all direct contacts of ego). Because based on the
behavior of attackers in OSNs, considering only ego network
features is not enough. More precisely, researchers stated that
most sybils and fake accounts can not create link with normal
users and most of their friends are either sybils or popular users
[21]. Therefore, considering the network of direct contacts
of attackers is important to reveal these kinds of structural
behavior. Another research work use recursive graph based
features to capture behavioral information for classification
and de-anonymization tasks without the availability of class
labels [22], although their goal is not anomaly detection.

One of the application of anomaly detection in OSN is
spam filtering. [23] performs online spam filtering on social
networks using incremental clustering, based on network-level
features such as sender’s degree and the interaction history
between users.



In addition of anomaly detection area, there are some
approaches for Sybil detection [7], [8]. These approaches uses
different graph analysis algorithms to search for legitimate and
Sybil users. Although, these schemes work by analyzing the
structure of the social network, all of them make three common
assumptions. First, the legitimate region of the graph is densely
connected. Second, attackers cannot establish a high number
of social connections to legitimate users. Third, the system
is given the identity of at least one legitimate user. Thus,
the performance of these schemes is heavily dependent on
the size and characteristics of the community surrounding the
legitimate users. Furthermore, another approach is [24] that is
a combination of graph and content based to detect Sybils. All
of the above mentioned approaches are supervised.

As the risk assessment in OSN is concerned, [25] propose
a measure for risk estimation by considering the profile simi-
larity and number of mutual friends that a target user has with
other strangers as a measure that how much is risky to become
friend with a stranger. They used supervised classification to
assign a risk score. However, due to the challenges in obtaining
labels, supervised learning algorithms are less attractive for
the task of risk assessment. In our proposal, we focus on risk
assessment in online social networks based on unsupervised
graph based anomaly detection.

VII. CONCLUSION

In this paper, we propose a local risk estimation measure
(Local Risk Factor) for direct contacts of a target user. Our
risk estimation is based on anomaly detection algorithm having
as key idea the fact the malicious users in OSNs show some
common features on the structure of their social graphs that is
different from those of legitimate users. We demonstrate that
LRF can be used to define the risk of direct contacts efficiently
in large scale OSNs. We also show that some of the features
are more influential in risk assessment in OSN than others. For
future directions we will use other user features to define risk
score and develop more accurate models for risk assessment in
OSNs. In addition, graph based approaches for risk assessment
in dynamic graph is challenging task and we will apply them
to have a high performance risk models that is more robust in
online social network by changing the behaviour of attackers.
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